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A B S T R A C T

Recently, cerebrospinal fluid (CSF) YKL-40 levels were reported to be a promising candidate biomarker of glial
inflammation in Alzheimer’s disease (AD). To detect how APOE ε4 affects CSF YKL-40 levels in cognitively
normal (CN) states, mild cognitive impairment (MCI) and AD dementia, data from 35 CN subjects, 63 patients
with MCI, and 11 patients with AD from a cross-sectional study in the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database were investigated. The results showed that CSF YKL-40 concentrations were increased
in the AD dementia group than in the CN group. CSF YKL-40 levels were higher in APOE ε4 carriers than in
noncarriers with MCI. No statistically significant difference was found in CSF YKL-40 levels between APOE ε4
carrier and noncarriers in AD and CN subjects. CSF YKL-40 concentrations were tightly related to CSF tau and p-
tau concentrations in the MCI group. Analysis implied that APOE ε4 might affect CSF YKL-40 levels in MCI
subjects, suggesting a crucial role of APOE ε4 in neuroinflammation in detecting individuals who might convert
to AD from MCI and, thus, as an effective predictive factor.

1. Introduction

Alzheimer’s disease (AD) is a complex neurodegenerative disease
with occult onset [1,2]. CSF levels of Aβ and tau protein are now
deemed the two most obvious biomarkers indicating amyloid deposi-
tion and the severity of neurodegeneration in the pathophysiological
process of AD [3,4]. Meanwhile, neuroinflammation has been treated as
a possible pathophysiological event in the occurrence of AD [5,6]. YKL-
40, or chitinase-3-like protein 1 (CHI3L1), has been reported as a
promising candidate marker of glial inflammation in AD [7–9]. Pre-
vious studies have revealed that CSF YKL-40 levels were higher in AD
groups than in cognitively normal (CN) groups [7,10,11] or in subjects
suffering from mild cognitive impairment (MCI) [10,12–14]. This
phenomenon is consistent with the potential role of astrocytosis in early
AD pathogenesis [15]. In contrast, some researchers reported that CSF
YKL-40 levels were not significantly increased in MCI and AD patients
compared with those in CN subjects [16]. Apolipoprotein E (APOE) ε4,
which was proven to be linked to up to 50% of AD cases, plays a crucial

role in the pathophysiology of AD [17,18]. However, the correlation
between APOE ε4 and CSF YKL-40 levels and alterations in other bio-
markers is still unknown. Inconsistent results about the CSF YKL-40
levels among AD, MCI and cognitively normal subjects have been re-
ported. Therefore, this inconsistent results drive us to design the current
study in order to analyze how APOE ε4 affects CSF YKL-40 concentra-
tions in CN states, MCI and AD using the Alzheimer’s Disease Neuroi-
maging Initiative (ADNI) platform, which is a publicly available data-
base.

2. Methods

2.1. ADNI

Patients' data were downloaded from the ADNI database (ad-
ni.loni.usc.edu). Data management staff were blinded to the subjects'
information in the tests. The ADNI was built in 2003 as a public-private
partnership organized by Principal Investigator Michael W. Weiner,
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MD. The main purpose of the ADNI was to combine data from serial
magnetic resonance imaging (MRI), positron emission tomography
(PET), other biomarkers, and clinical and neuropsychological assess-
ments to quantitatively describe the progression of MCI and early-stage
AD. It is a global research cooperation of the ADNI to actively assist in
investigating and developing treatments that could potentially slow or
stop the occurrence of AD. Participants in this database were collected
from up to 50 sites throughout Canada and the USA. Further details are
available at www.adni-info.org. Each ADNI site has institutional review
board approval and has received written informed consent from all
subjects or authorized representatives.

2.2. Subjects

Based on sharing available baseline CSF YKL-40, Aβ42, total tau,
and p-tau level information, CN subjects and those with MCI and AD
dementia from ADNI-1 were included in the analysis. Inclusion/exclu-
sion standard details are given at http://www.adni-info.org. The sub-
jects involved in the analysis met the following criteria: (1) being aged
between 55 and 90 years; (2) having finished at least 6 years of school
education; (3) being fluent in Spanish or English; and (4) being free of
serious neurological diseases other than AD. CN subjects were defined
as subjects with Mini-Mental State Examination (MMSE) score ≥ 24
and Clinical Dementia Rating (CDR) score of 0. MCI patients were de-
fined as subjects who met all the following criteria, including MMSE
score ≥ 24; loss of objective memory, as reflected in the scores of de-
layed recall in the Wechsler Memory Scale Logical Memory II (> 1
standard deviation (SD) below the normal mean); CDR of 0.5; preserved
activities of daily living; and the absence of dementia. AD dementia
patients fulfilled the National Institute of Neurological and
Communicative Disorders and Stroke and the Alzheimer’s Disease and
Related Disorders Association (NINCDS-ADRDA) standard for probable
AD and had MMSE score between 20 and 26 and CDR between 0.5 and
1.0 [19]. In total, 109 participants (35 who were CN, 63 with MCI, and
11 with AD) were involved in the current research.

2.3. Neuropsychological assessment

Different domains of cognition were assessed in all the participants
by a standardized cognitive evaluation that included the following di-
mensions: (1) the MMSE [20], Alzheimer’s Disease Assessment Scale-
cognitive subscale 13 (ADAS-13) [21], and Global Clinical Dementia
Rating Scale (CDR-SB) [22] to reflect global cognitive function; (2) the
Rey Auditory Verbal Learning Test (RAVLT), including 5-minute de-
layed recall (RAVLT-immediate recall), 30-minute delayed recall
(RAVLT-delayed recall), and yes-no recognition (RAVLT-recognition),
to reflect memory; (3) the Trail Making Test-A and B (TMT-A/B) [23] to
reflect attention/executive function; (4) animal fluency and the 30-item
Boston Naming Task (BNT-30) [24] to reflect language function; (5) the
Functional Assessment Questionnaire (FAQ) [25] and Neuropsychiatric
Inventory (NPI) [26] to reflect psychosocial function.

2.4. APOE genotyping

APOE (gene map locus 19q13.2) genotypes of the research partici-
pants were obtained from the previously mentioned ADNI database. All
participants were divided into two groups: the APOE ε4 carriers group,
with the phenotypes ε2/ε4, ε3/ε4, and ε4/ε4, and the APOE ε4 non-
carriers group, with ε2/ε2, ε2/ε3, and ε3/ε3 genotypes.

2.5. Measurements of YKL-40, Aβ42, tau, and p-tau levels in CSF

CSF YKL-40 levels (Unit: ng/mL) were determined by the MicroVue
YKL-40 ELISA assay (Quidel Corp.) at Washington University [7]. CSF
Aβ42, total tau, and p-tau quantitation (unit: pg/mL) was performed in
the ADNI biomarker core (University of Pennsylvania) through the

multiplex xMAP Luminex platform (Luminex Corp, Austin, TX, USA)
with the INNOBIA AlzBio3 kit (Fujirebio, Ghent, Belgium), which has
been described in previous publications [27–29]. More information on
how CSF was obtained and on the determination methods and quality
control processes of the ADNI is available at www.adni-info.org.

2.6. Measurements of the volumes of Hippocampus, entorhinal cortex,
fusiform and medial temporal lobe

Detailed information about ADNI neuroimaging standardized steps
can be found in previous publications [30]. ADNI MRI data were ob-
tained using 3 T MRI scanners. The FreeSurfer version 5.1 image ana-
lysis suite (http://surfer.nmr.mgh.harvard.edu/) [31] was applied to
reflect cortical reconstruction and volumetric segmentation, as de-
scribed in previous reports [32–35]. In this study, entorhinal cortex
(EC), hippocampus, and fusiform and medial temporal lobe atrophy
(MTA) volumes were assessed. More information about ADNI imaging
protocols is available at http://adni.loni.usc.edu/methods/documents/
mri-protocols/.

2.7. Statistical analysis

Demographic and clinical data were compared among the CN, MCI
and AD subjects. Continuous variables using one-way ANOVA were
expressed as the mean ± standard deviation (SD). The frequencies of
categorical variables were examined using the chi-square test, and
skewed distributed variables represented by median (M) and inter-
quartile range (IQR) were tested by the Kruskal-Wallis test. Statistical
differences of CSF YKL-40 concentrations between APOE ε4 carriers and
APOE ε4 noncarriers were determined using two-tailed Student’s t-test.
The association between CSF YKL-40 levels and other variables in the
sample was analyzed using Spearman's correlation test. SPSS software
(version 23.0; IBM SPSS) was used to perform the statistics in the study.
Statistically significant difference was acknowledged if P < 0.05, and
all tests were two-sided unless otherwise specifically noted in the re-
search. Figures were obtained from GraphPad Prism 6.

3. Results

3.1. Demographic features of the subjects

Table 1 summarizes the demographic characteristics and clinical
findings of the participants. The results revealed that no statistically
significant differences (all P > 0.05) existed in the ages or the extent of
MTA among these three diagnostic groups (CN, MCI and AD subjects). A
relatively higher proportion of females was found in the AD group than
in the other two groups (P=0.006). The percentage of APOE ε4 car-
riers in the AD, MCI and CN groups was 72.7% vs. 54% vs. 22.9%,
respectively (P= 0.002). Not surprisingly, the results of neuropsycho-
logical assessments (including global cognitive function, memory, at-
tention/executive function, and language) were significantly different
among these three groups, and the worst results were found in the AD
group. In addition, significant differences among CSF Aβ42, total tau,
and p-tau levels were detected across the three groups (P < 0.001,
P= 0.004, and P < 0.001). There were significantly smaller hippo-
campus, entorhinal cortex and fusiform lobe volumes in AD patients
(P < 0.001, P < 0.001, and P < 0.001, respectively).

3.2. Concentrations of CSF YKL-40 in APOE ε4 carriers

The CSF YKL-40 concentration was significantly increased in AD
patients compared with that in CN subjects (mean, AD > MCI > CN,
467.1 vs. 374.2 vs. 335.0 ng/mL, P=0.036, P=0.085, P=0.199,
Fig. 1). In addition, to investigate the relationship between the APOE ε4
genotype and CSF YKL-40 concentration, the concentrations of CSF
YKL-40 between APOE ε4 carriers and noncarriers in the 3 categories
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were compared. As demonstrated in Fig. 2A, the concentrations of CSF
YKL-40 in APOE ε4 carriers in the MCI group were significantly higher
than those of noncarriers (P=0.032). However, no statistically sig-
nificant difference was found in the CN or AD groups (all P > 0.05). To
explore how APOE ε4 status affects levels of CSF YKL-40, the re-
lationship between APOE ε4 carrier status and CSF YKL-40 was

investigated. Fig. 2B indicates that concentrations of CSF YKL-40 in-
creased in a gene dose-dependent manner.

3.3. Correlations between CSF YKL-40 and other variables

With the aim of determining whether the variation in CSF YKL-40
concentrations is associated with Aβ42, tau and p-tau levels in AD, the
correlations between CSF YKL-40 and other CSF biological markers
were examined in all diagnostic groups (Table 2) using Spearman's
correlation analyses. No significant correlations were found between
the levels of CSF YKL-40 in the CN group (correlation=0.144,
P= 0.410; correlation=0.166, P= 0.342; correlation=0.174,
P= 0.318). In the MCI group, it was found that CSF YKL-40 levels were
positively related to tau and p-tau levels (correlation=0.380,
P= 0.002; correlation=0.306, P=0.015). In the AD group, no sig-
nificant correlations were found between the concentrations of CSF
YKL-40 and Aβ42, tau and p-tau (correlation=0.509, P=0.110; cor-
relation=0.382, P= 0.247; correlation= 0.336, P= 0.312).

4. Discussion

Inflammation is thought to contribute to AD pathogenesis [6,36]. In
the central nervous system (CNS), astrocytes and microglia, which ex-
press YKL-40 to modulate neuroinflammation [7,37], produce most of
the APOE.

In the present study, a higher concentration of CSF YKL-40 was
detected in the AD dementia group than in the CN group, indicating
that elevated CSF YKL-40 levels may be a critical characteristic of AD
pathogenesis. Although not statistically significant, our data still de-
monstrated higher CSF YKL-40 levels in MCI patients than in CN sub-
jects. The results were consistent with previous studies [7,14,38].

Moreover, CSF YKL-40 levels were significantly higher in APOE ε4
carriers than in noncarriers with MCI. However, the level of CSF YKL-40
did not appear to vary significantly between APOE ε4 carriers and
APOE ε4 noncarriers in CN and AD subjects. These results were in ac-
cordance with findings from prior studies [7,10,14,38] and indicate a
role of neuroinflammation in the early stage of AD and even in MCI. To
examine how APOE ε4 affects levels of CSF YKL-40, subjects involved in
the research were further divided into groups of APOE ε4 (-/-), APOE ε4
(+/-) or APOE ε4 (+/+) individuals. As expected, a statistically sig-
nificant positive association was observed between CSF YKL-40 con-
centrations and the number of APOE ε4 genes in a seemingly dose-de-
pendent manner. The existence of APOE ε4 might also be a predictive
factor of the progression from MCI to AD. This result suggests that
elevated CSF YKL-40 levels in APOE ε4 carriers with MCI might indicate
early activity of the AD pathophysiology.

Furthermore, it was found that in MCI subjects, the CSF YKL-40
concentration was strongly correlated with CSF total tau and p-tau
concentrations. This relationship strongly supports the assumption that
CSF YKL-40 levels could be applied as a biomarker to characterize
sensitivity to AD-related biological variations in prodromal AD.
Therefore, using these multiple biomarkers could potentially allow us to
monitor the pathophysiological phase of the disease, to identify MCI
patients who are at higher risk of progressing into AD [39] and to en-
hance the accuracy of diagnosis [40].

A number of limitations in this research should be addressed. First,
it is a simple cross-sectional study. Though correlations were observed
between YKL-40, tau and p-tau protein levels, a causal relationship
could not be determined between the different biomarkers. Therefore,
further longitudinal studies are needed to confirm the interaction be-
tween APOE ε4, neuroinflammation and cognitive decline. Second, in
the AD group, YKL-40 levels between APOE ε4 carriers and noncarriers
demonstrated no statistically significant difference. One possible reason
for this result could be the comparatively small sample size of AD
subjects. Another possible reason is that a neuroinflammation plateau
may have been reached in AD patients.

Table 1
Demographic and clinical characteristics of the study subjects.

Variable CN (n= 35) MCI (n= 63) AD (n= 11) P value

Age, years 75.9 (5.2) 73.8 (6.4) 73.6 (5.6) 0.214
Education, years 16 (13–18) 16 (14–18) 13 (12–16) 0.014
Female [n (%)] 20 (57.1) 18 (28.6) 7 (63.6) 0.006
APOE ε4 carriers [n

(%)]
8 (22.9) 34 (54) 8 (72.7) 0.002

MMSE 29 (29–30) 27 (26–28) 24 (22–25) < 0.001
ADAS-13 8.9 (3.7) 18.3 (6.4) 27.9 (7.5) < 0.001
CDR-SB 0 (0-0) 1.5 (1.0–2.0) 4.0 (3.0–5.5) < 0.001
RAVLT-immediate

recall
8 (7–10) 3 (1–6) 1 (1–2) < 0.001

RAVLT-delayed
recall

8 (6–10) 1 (0–4) 0 (0–3) < 0.001

RAVLT-recognition 14 (12–15) 10 (7–13) 9 (5–10) < 0.001
TMT-A 34 (29–38) 39 (30–50) 43 (36–74) 0.028
TMT-B 77 (67–103) 102 (74–130) 182

(121–300)
< 0.001

BNT-30 28 (26–30) 28 (25–29) 23 (23–28) 0.008
Animal fluency 19.1 (5.5) 16.0 (4.1) 12.6 (4.5) < 0.001
NPI 0 (0-0) 0 (0-0) 0 (0–1) 0.010
FAQ 0 (0-0) 2 (0–5) 10 (7–20) < 0.001
CSF Aβ42 (pg/mL) 1245

(744–1643)
658
(521–958)

511
(351–618)

< 0.001

CSF tau (pg/mL) 239.5 (77.2) 303.1 (114.9) 354.7 (147.3) 0.004
CSF p-tau (pg/mL) 22.1 (8.1) 30.1 (13.3) 36.4 (14.7) < 0.001
Hippocampus

(mm3)
7219.3
(807.9)

6285.0
(1045.0)

5551.5
(1010.9)

< 0.001

Entorhinal cortex
(mm3)

3794.9
(761.7)

3360.1
(795.7)

2554.5
(621.3)

< 0.001

Fusiform lobe
(mm3)

16829.5
(2084.4)

16951.3
(2052.9)

14223.2
(2008.3)

< 0.001

MTA (mm3) 19178.5
(2761.1)

19116.2
(2600.7)

17344.5
(2979.3)

0.115

CN: cognitively normal; MCI: mild cognitive impairment; AD: Alzheimer’s
disease; APOE: Apolipoprotein E; MMSE: Mini-Mental State Examination;
ADAS-13: Alzheimer’s Disease Assessment Scale-cognitive subscale 13; CDR-SB:
Global Clinical Dementia Rating Scale; RAVLT: Rey Auditory Verbal Learning
Test; TMT: Trail Making Test; BNT-30: Boston Naming Task; NPI:
Neuropsychiatric Inventory; FAQ: Functional Assessment Questionnaire; CSF:
cerebrospinal fluid; MTA: Medial temporal lobe atrophy.
Data are presented as the mean ± SD for one-way ANOVA for normally dis-
tributed continuous variables and as the median (M) and the interquartile range
(IQR) for the Kruskal-Wallis test for skewed distribution variables. For gender
and genotype distribution, values are presented as numbers (%) using the chi-
square test.

Fig. 1. Comparison of CSF YKL-40 concentrations in CN, MCI and AD
groups. P value tested by the Kruskal-Wallis test.
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5. Conclusion

In summary, the CSF YKL-40 concentration was shown to be higher
in APOE ε4 carrier MCI patients than in noncarrier MCI patients. Thus,
CSF YKL-40 levels could be used as a potential inflammation biomarker
to detect individuals who might convert from MCI to AD. Further larger
sample studies are needed to determine the correlation between CSF
YKL-40 levels and amyloid deposition and neurodegeneration in the
prognosis of progression from prodromal MCI to dementia.
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